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ABSTRACT

Theorem: The Euclidean topology on a finite dimensional vector space X is
the weakest Hausdorff affine topology on X for which X is second category
in itself.

Introduction

A topology I on a real vector space X is called an affine topology provided
(i) for each element y of X and each real number a the map T: X - X defined
by Tx = ax + y is continuous, (ii) for each element y of X (y distinct from the
neutral element § of X) the map S: R — X defined by Sa = ay is a homeo-
morphism (where R denotes the set of real numbers with the usual topology)
and (iii) for each element y of X the set {ay: a € R} is closed. This concept was
introduced by M. Frechet [2, p. 203] and has been studied by V. Klee[3, 4, 5].
Every linear topological space (in the sense of Dunford and Schwartz [1]) in
which points are closed has an affine topology, but not every affine topology
makes a space a linear topological space. The concepts coincide only on one-
dimensional spaces.

The purpose of this paper is to point out a topological feature of the Euclidean
topology on a finite dimensional vector space which distinguishes it among the
other affine topologies. A statement of this characterization is found in the abstract
and is to be interpreted in the strongest sense: for each Hausdorff affine topology
I" which is stronger than the Euclidean topology on X it is true that (X,T) is
second category, and for each HausdorfT affine topology I which is either strictly
weaker than or not comparable to the Euclidean topology on X it is true that
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(X,T) is first category. The proof is contained in the statements of Lemmas 4
and 5.

An example at the end of the paper shows that the theorem is not vacuous by
exhibiting a Hausdorff affine topology strictly weaker than the Euclidean topology
on each n-dimensional space (1 < n < o0). Many examples of affine topologies
which are strictly stronger than the Euclidean topology (and hence necessarily
Hausdorff)are known, for example, the topology I'y discussed below (also see [5]).

In the following, whenever a topolgical term (for example: closed, interior) is
used without being modified by a specific topology (for example: I'-closed,
I',-interior) it refers to the Euclidean topology.

The proof

Let 4 be a subset of a real vector space X and let x be an element of 4. We say
A is radial at x provided for each y in X there is an ¢ > 0 such that {x + ty:
0 <t < ¢} is a subset of 4. It is not difficult to see that if a set 4 is open in an
affine topology then A is radial at each point of 4. Thus the strongest affine
topology a vector space may possess is that in which precisely those sets which
are radial at each of their points are open. This topology is usually called the core
topology and we denote it by I'y,.

Lemmas 1 and 2 are interesting because they reveal relations between the
T'o-interior and the interior of subsets of finite dimensional vector spaces. Other
relations of this type were studied in [3]. The two-dimensional case of Lemma 1
follows from a result of Klee [5, Proposition 2].

LemMA 1. Let A be a I'y-open subset of an n-dimensional vector space

X (n < o0). Then I'y-closure (A) has interior.

Proor. The statement is trivial if n = 1. Assume the lemma to be true for
(n — 1)-dimensional vector spaces. We can further assume 0 € A. Let {x;, --,x,}
be a basis for X. Choose a number a > 0 so that B = {rx;:0 < s < a}is a
subset of A. For each y € B let

S,={y+tx 4+ Ftx,:—-1<t;<1,i=2,-,n}

Since (A N S,) — y is a ['y-open set in the linear span of x,, ---,x,, the induction
hypothesis assures the existence of an integer k(y) and real numbers s,(y), ---, s,(3)
such that the (n—1)-cube C, = {y + t,%, + -+ + £,%,: 5(») £ 1; < 5,(y) + 1/k(y),
i =2,--,n} is contained in Ij-closure (4 NS)). Since B is second category,



214 CLIFFORD A. KOTTMAN Israel J. Math.,

there is an integer k such that D = {y € B: k(y) = k} is dense on some subinterval
of B.

For each i =2,--,n let P;={—1,—1+ 12k, —1+2/2k,---, + 1 - 1/2k}
and let Q be the Cartesian product [[}-, P; so that the cardinality of Q is (4k)""*.
Define f:D— Q by f(y) = (rs, ++,1,) provided r; = s(y) < r; + 1/2k. The
preimages of points in Q partition D into at most (4k)"~! subsets. Hence some
element in this partition, say f ~(ry,-+,1,) is dense in some open subinterval E
of B. (It is an easy exercise to show that if W is dense in some interval of the real
line and £ is a finite partition of W then some element of 2 is dense in some
interval.) We conclude that for each y in a dense subset of E {y + #,x, + -
+ 1%, 1y + 12k < t; < ry+ 2/2k, i = 2, ---,n} is a subset of I'y-closure (4). Thus

i 2,
{t;x; + - +1,x,: ;% € E, nt g <h<mitapi= 2,0}

is an open set contained in I'y-closure (A4).

LeMMA 2. Let I be a Hausdorff affine topology on a finite dimensional
vector space X and let x and y be distinct elements of X. Then there exist a
T-open set V containing x and an open set U containing y suchthat UNV = .

Proor. We may assume that x = 6. Let ¥V, and V,. be disjoint I'-open I
neighborhoods of # and y respectively. Replacing V; by V; N (¥, — y) and
V, by V, N (Vy + y) if necessary, we may assume that V, = V¥, + y. The topology
I' is weaker than I'y, therefore by Lemma 1, ¥ is I'-dense in some open set W.
Let ze W NV, and define V = V; — z and U = interior (I'-closure (V, — z)).
Now V is a [-open set containing § and U is an open neighborhood of y. Further-
more, U and V are disjoint since (V; — z) N (I'-closure (V, — z)) = &.

LemMA 3. If T is a Hausdorff affine topology on a finite dimensional vector
space X and A is a compact subset of X then A is I'-closed.

Proor. Let xe X with x¢ A. By Lemma 2, for each a € 4 there exist disjoint
sets ¥, and U, such that ¥, is a I'-neighborhood of x and U, is a neighborhood
of a. Choose {ay,---,a,} < A4 such that 4 c U {U,:i = 1,---,n}. It follows
that N{V,:i=1,.-,n} is a I'neighborhood of x disjoint from A and thus
A is I'-closed.

LemMma 4. If T is a Hausdorff affine topology on a finite dimensional vector
space X which is either strictly weaker than or not comparable to the Euclidean
topology on X, then (X,T) is first category in itself.
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ProoF. Since I is not stronger than the Euclidean topology there can exist
no non-empty I'-open sets which are bounded. (If there were a bounded non-
empty I'-open set there would be a bounded I'-neighborhood of 6 and, since
neighborhoods of # absorb each bounded set, it would follow that T is stronger
than the Euclidean topology.) Thus compact sets have no I'-interior and it follows
from Lemma 3 that compact sets are I'-nowhere dense. But every finite dimen-
sional space may be covered by a countable number of compact sets.

We remark that Lemmas 3 and 4 are false if I" is allowed to be a non-Hausdorff
affine topology.

LemMa 5. If T is an affine topology on an n-dimensional vector space
X (n < oo) which is stronger than the Euclidean topology on X, then (X,T) is
second category in itself.

Proor. Let {F;,F,,---} be a sequence of I'-closed subsets of X such that
X = U{F;:i=12,--}. We will show that for each set U in X with non-empty
interior there is an F; which contains an open (and therefore I-open) subset of U
and hence is not I'-nowhere dense. This statement is clear when n = 1, and by
induction we assume it is true for spaces of dimensionz — 1. Let {x, ---,x,} be a
basis for X. It suffices to consider U = {f;x; +-- +#,x,: —1 <¢; < 1 for
i=1,--,n}. Let B= {tx;: —1 <t < 1} and for each yeB let S, = {y + 1,x,
+ -+ tx,: —1 <t; < 1fori=2 -, n}. Bythe proper translation, S, may be
considered an open subset of an (n — 1)-dimensional space and hence, by induc-
tion, there exist integers j(y) and k(y) and real numbers s,(y), ---,s,(y) such that
Cy={y+ x4+ + 1% 50) < t; <s5,(0) + 1/k(y) for i=2,-,n} is a
subset of F;,, N S,. Since B is second category, there exist integers j and k such
that D = {y € B: j(y) = j and k(y) = k} is dense on some subinterval of B. Now an
argument identical to that found in the second paragraph of the proof of Lemma 1
(with T'y-closure (4) replaced by F;) shows F; contains an open subset of U.

An example

We will construct an example of a Hausdorff affine topology I'; on each an-
dimensional vector space X (n = 2) which is strictly weaker than the Euclidean
topology. This will be done with the aid of the following proposition which
perhaps is of interest in itself.

PrOPOSITION.  There exists a collection 3 of open subsets of the set of real
numbers such that
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(a) if Fe3 and r is a non-zero real number then rF €3,

(b) if F,GeJ then F N Ge,

(c) if FeSand xeF then F — x€3,

(d) if x and y are distinct real numbers there is an F €3 such that x + F and
y + F are disjoint, and

(e) each FeJ is unbounded and contains 0.

ProoF. Let Fo = U{(2n — %, 2n + H):nis an integer} and define
3I = {ﬂ'{':lsi(Fo —t): s; and f; are real numbers with s; 5 0, 1,€F, for
i=1,---,m and m is a positive integer}. Let FeJ, r be a non-zero real number
and x € F. For some s; and t; we have F = N {s(Fo —t,): i = 1,---,n}, therefore
rF = O {rs{Fo — t;): 1,-+-,n}. Thus J satisfies (a). I clearly satisfies (b). To prove
S satisfies (c) we must show F—x€3J3. But F—x =N {s(Fo—t;)—x: i=1,-,n}
and hence, by (b), it suffices to show s;(F, — ;) —x€3J for i =1, .-+, n. Since
xes; (Fo—t) it follows that ¢+ x/s;e F,, hence s;(Fo—1¢)—x=
s{Fo—(t; + x[s))€33. If xand y are distinct real numbers then (x + (x — y)F,)
Ny + (x — y)F, = &, therefore I satisfies (d). It is clear that each F e con-
tains 0 and it remains only to show F = N {s;(F, — £;): i = 1, ---,n} is unbounded.
We will establish this by showing F contains infinitely many integers. Let Z and
27 denote the integers and the even integers respectively. For each real number r
define [r] to be the equivalence class of r in the quotient group R/2Z. Define
f: Z - (R2Z)" by f(k) = ([t; + k/s;], =, [t, + Kkfs,]). By a standard com-
pactness argument there exist infinitely many integers k such that [1; + k/s]
e U{[e]: —} <& <1} foreach i =1,-,n Butforeach i, [, + k/s;] € U{[e]:
—1 < g < 1} implies?; + k/s; € Fo which in turn implies k €5;(Fo — ¢;). Therefore
there are infinitely many integers k such that ke F.

ExaMpPLE. A Hausdorff affine topology Ty on X which is strictly weaker
than the Euclidean topology on X. Let {x, --,x,} be a basis for X and let J
be a collection as in Proposition 1. For each ¢ > 0 and FeJ define
G(e,F) = {t1x; + - + t,%, 1 t; € F and either [’sl <gfori=1,.-,nor ]t1[ =&
and 0 < |t,-| < gfori=2,-,n},and for each x€ X define G(x,¢, F) = G(e, F) + x.
Define T, as the topology whose base is {G(x,¢,F):xe X, ¢>0, and FeJ}.
Properties (a), (b), and (c) of Proposition 1 are used to show I'; is an affine topology
on X, and properties (d) and (e) show respectively that I'; is Hausdorff and
strictly weaker than the Euclidean topology.
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