
A C H A R A C T E R I Z A T I O N  O F  T H E  E U C L I D E A N  

T O P O L O G Y  A M O N G  T H E  A F F I N E  T O P O L O G I E S  

B Y 

CLIFFORD A. K O T TMAN 

ABSTRACT 

Theorem: The Euclidean topology on  a finite dimensional vector space X is 
the weakest Hausdorff atiine topology on  X for  which X is second category 
in itself. 

Introduction 

A topology F on a real vector space X is called an affine topology provided 

(i) for each element y of X and each real number a the map T: X ~ X defined 

by T x  = a x  + y is continuous, (ii) for each element y of X (y distinct from the 

neutral element 0 of X) the map S: R ~ X defined by S a  = a y  is a homeo- 

morphism (where R denotes the set of real numbers with the usual topology) 

and (iii) for each element y of X the set { a y :  a ~ R }  is closed. This concept was 

introduced by M. Frechet [-2, p. 203] and has been studied by V. Klee [3, 4, 5]. 

Every linear topological space (in the sense of Dunford and Schwartz [1]) in 

which points are closed has an affine topology, but not every affine topology 

makes a space a linear topological space. The concepts coincide only on one- 

dimensional spaces. 

The purpose of this paper is to point out a topological feature of the Euclidean 

topology on a finite dimensional vector space which distinguishes it among the 

other affine topologies. A statement of this characterization is found in the abstract 

and is to be interpreted in the strongest sense: for each Hausdorff affine topology 

F which is stronger than the Euclidean topology on X it is true that (X, F) is 

second category, and for each Hausdorff affine topology F which is either strictly 

weaker than or not comparable to the Euclidean topology on X it is true that 
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(X,F)  is first category. The proof  is contained in the statements of Lemmas 4 

and 5. 

An example at the end of the paper shows that the theorem is not vacuous by 

exhibiting a Hausdorff affine topology strictly weaker than the Euclidean topology 

on each n-dimensional space (1 < n < oo). Many examples of affine topologies 

which are strictly stronger than the Euclidean topology (and hence necessarily 

Hausdorff) are known, for example, the topology ]?o discussed below(also see [5]). 

In the following, whenever a topolgical term (for example: closed, interior) is 

used without being modified by a specific topology (for example: ]?-closed, 

]?0-interior) it refers to the Euclidean topology. 

The proof 

Let A be a subset of  a real  vector space X and let x be an element of  A. We say 

A is radial  at x provided for each y in X there is an e > 0 such that {x + ty: 

0 _< t - e} is a subset of A. It is not difficult to see that if a set A is open in an 

affine topology then A is radial at each point of A. Thus the strongest affine 

topology a vector space may possess is that in which precisely those sets which 

are radial at each of their points are open. This topology is usually called the core 

topology and we denote it by ]?o. 

Lemmas 1 and 2 are interesting because they reveal relations between the 

]?o-interior and the interior of  subsets of finite dimensional vector spaces. Other 

relations of this type were studied in [3]. The two-dimensional case of Lemma 1 

follows from a result of Klee [5, Proposition 2].  

LEMMA 1. Let A be a Fo-open subset of an n-dimensional vector space 

X (n < o0). Then Fo-closure (A) has interior. 

PROOF. The statement is trivial if n = 1. Assume the lemma to be true for 

(n - 1)-dimensional vector spaces. We can further assume 0 cA.  Let {xa, .. . ,x,} 

be a basis for X. Choose a number a > 0 so that B = {txx: 0 <_ t <_ a} is a 

subset of A. For  each y e B let 

S r = {y + t2x2 + ... + t,x,: - 1 < ti < 1, i = 2, ...,n}. 

Since (A t~ Sy) - y is a ]?o-open set in the linear span of x2, "-', x , ,  the induction 

hypothesis assures the existence of an integer k(y) and re al numbers s2(y), --', s,(y) 

such that the ( n -  1)-cube Cy = {y + t2x2 + "'" + t,x,: st(y) <- t, ~ s,(y) + 1/k(y), 

i = 2, ...,n} is contained in Fo-closure (A n St). Since B is second category, 
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there is an integer k such tha t  D = {y E B: k(y)  = k} is dense on some subinterval  

o f  B. 

Fo r  each i = 2, . . . ,n  let P~ = ( - 1, - 1 + 1 / 2 k , -  1 + 2/2k, -.., + 1 - 1/2k} 

and let Q be the Cartesian p roduc t  [-[~ = 2 Pi so tha t  the cardinali ty of  Q is (4k) n- 1. 

Define f : D ~ Q by f ( y )  = (r2, "", rn) provided rl < st(y) < ri + 1/2k. The  

pre images  o f  points  in Q par t i t ion  D into at mos t  (4k) "-1 subsets. Hence some 

element  in this par t i t ion,  say f - 1 ( r 2 , . . . ,  rn) is dense in some open sub in te rva lE  

of  B. ( I t  is an easy exercise to show tha t  if  W is dense in some interval  o f  the real 

line and ~ is a finite par t i t ion  of  W then  some e lement  o f  ~ is dense in some 

interval.)  We conclude tha t  for  each y in a dense subset  o f  E {y + t2x2 + ... 

+ tnx,: ri + 1/2k < ti < ri + 2/2k, i = 2, . .- ,n} is a subset  o f  Fo-closure (A). Thus  

1 2 
{ t l x l  + "" + t,Xn: t l x l  e E, r~ + 2-k < ti < r~ + -2k' i = 2, - . . ,n} 

is an open set c o n t a i n e d  in Fo-closure (A). 

L~MMA 2. Let  F be a H a u s d o r f f  affine topology on a f ini te  d imens ional  

vector space X and let x and y be dist inct  e lements  o f  X .  Then  there exist  a 

F-open set V containing x and an open set U containing y such that U (3 V = f25. 

PRoov. We may  assume tha t  x = 0. Let  V1 and 112. be disjoint F -open  F 

ne ighborhoods  o f  0 and y respectively. Replacing 1/1 by 1/1 c~ ( V 2 -  y) and 

112 by V 2 c3 (V~ + y) if  necessary, we may  assume tha t  1/2 = V~ + y. The  topo logy  

F is weaker  than  F o, therefore  by L e m m a  1, V1 is F-dense in some open set W. 

Let  z c W c~ 111 and define V = V1 - z and  U = inter ior  (F-closure  (V2 - z)). 

N o w  V is a F -open  set containing 0 and U is an open ne ighborhood  of  y. Fur ther-  

more,  U and V are disjoint  since (V1 - z) c3 (F-closure  (Vz - z)) = 25. 

LZMMA 3. I f  F is a H a u s d o r f f  affine topology on a f in i te  d imens ional  vector 

space X and A is a compact  subset o f  X then A is F-closed. 

PROOF. Let  x ~ X with  x ~ A. By L e m m a  2, for  each a ~ A there exist disjoint 

sets V, and Ua such tha t  V, is a F-ne ighborhood  of  x and Ua is a ne ighborhood  

o f  a. Choose  {a~, . . . ,an} c A such tha t  A c u {Ua,: i = 1 , - . . ,n} .  I t  fol lows 

tha t  n {Va,: i = 1, . .- ,n} is a F -ne ighborhood  of  x disjoint f rom A and thus  

A is F-closed. 

LEMMA 4. I f  F is a H a u s d o r f f  affine topology on a f in i te  d imensional  vector 

space X which is either strict ly  weaker  than or not comparable  to the Eucl idean 

topology on X ,  then (X ,  F) is f irs t  category in itself. 
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PROOF. Since F is not stronger than the Euclidean topology there can exist 

no non-empty F-open sets which are bounded. (If  there were a bounded non- 

empty F-open set there would be a bounded F-neighborhood of  0 and, since 

neighborhoods of 0 absorb each bounded set, it would follow that F is stronger 

than the Euclidean topology.) Thus compact sets have no F-interior and it follows 

from Lemma 3 that compact sets are F-nowhere dense. But every finite dimen- 

sional space may be covered by a countable number of compact sets. 

We remark that Lemmas 3 and 4 are false if F is allowed to be a non-Hausdorff 

affine topology. 

LEMMA 5. I f  F is an aj~ne topology on an n-dimensional vector space 

X (n < oo) which is stronger than the Euclidean topology on X,  then (X, F) is 

second category in itself. 

PROOF. Let {F1 ,Fz , ' " )  be a sequence of F-closed subsets of X such that  

X = t3 (Ft: i = 1,2,--.}. We will show that for each set U in X with non-empty 

interior there is an Fj  which contains an open (and therefore F-open) subset of U 

and hence is not F-nowhere dense. This statement is clear when n = 1, and by 

induction we assume it is true for spaces of dimension n - 1. Let {xl, -.-,x,} be a 

basis for X. It suffices to consider U =  {tlx x + . . . + t . x . : - I  < t , <  I for 

i = 1, . . . ,n}.  Let B = {tx~: - 1 < t < 1} and for each y ~B let Sy = {y + t2x2 

+ ... + t,x,: - 1 < t, < 1 for i = 2 .-.,n}. Bythe  proper translation, Sy may be 

considered an open subset of an (n - 1)-dimensional space and hence, by induc- 

tion, there exist integers j(y) and k(y) and real numbers s2(y), -.., s,(y) such that 

C r = {y + t2x 2 q -  " "  -1- t,x,: st(y ) < t t < st(Y) + 1/k(y) for i = 2 , - . . ,n}  is a 

subset of Fj(y) c3 S r. Since B is second category, there exist integers j and k such 

that D = {y ~ B: j (y)  = j and k(y) = k} is dense on some subinterval of  B. Now an 

argument identical to that found in the second paragraph of the proof  of Lemma 1 

(with Fo-closure (A) replaced by F j) shows Fj contains an open subset of U. 

An example 

We will construct an example of a Hausdorff affine topology F1 on each n- 

dimensional vector space X (n > 2) which is strictly weaker than the Euclidean 

topology. This will be done with the aid of  the following proposition which 

perhaps is of  interest in itself. 

PROPOSITION. There exists a collection ~ of  open subsets of  the set of  real 

numbers such that 
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(a) i f  F ~  and r is a non-zero real number then rF~53, 

(b) i f  F, G~,~ then F n G ~ ,  

(c) i f  F ~ and x ~ F  then F -  x ~ ,  

Israel J. Math., 

(d) i f  x and y are distinct real numbers there is an F E ~  such that x + F and 

y + F are disjoint, and 

(e) each F ~ is unbounded and contains O. 

PROOF. Le t  Fo = U {(2n - ½, 2n + ½): n is an integer} and define 

= { A i % l s i ( F o - 6 ) :  si and ti are real numbers  with s~ 5 0 ,  t iEFo for  

i = 1, . . . ,  m and m is a positive integer}. Let  F e 3 ,  r be a non-zero real number  

and x e F. For  some si and ti we have F = n {s~(Fo - fi): i = 1, . . . ,  n }, therefore  

rF = n {rsi(Fo - 6): 1,-.-, n}. Thus ~ satisfies (a). .~ clearly satisfies (b). To  prove 

.~ satisfies (c) we must  show F - x E ~ .  But F - x  = n { s i ( F o - f i ) - x :  i = 1, .. . ,n} 

and hence, by (b), it suffices to  show si(Fo - 6) - x ~ g for i = 1, ..., n. Since 

x e s ~  ( F o - 6 )  it follows that  t i + x / s i e F o ,  hence s i ( F o - t i ) - x =  

s~(Fo- (6  + x/s,)) ~ .  I f x  and y are distinct real numbers  then (x + (x - y)Fo) 

n ( y  + (x - y)Fo = ~ ,  therefore ,~ satisfies (d). It  is clear tha t  each FE ,~  con- 

tains 0 and it remains only to show F = c~ {si(Fo - 6): i = 1, ..., n} is unbounded.  

We will establish this by showing F contains infinitely many integers. Let  Z and 

2Z denote  the integers and the even integers respectively. For  each real number  r 

define [ r ]  to be the equivalence class of  r in the quot ient  group R/2Z.  Define 

f :  Z ~ (R/ZZ)" by f ( k )  = ( [ q  + k/sl],  ..., I t ,  + k/s,]). By a s tandard com- 

pactness argument  there exist infinitely many integers k such tha t  [6 + k/s.] 

u {[e]: - ½ < e < ½} for each i = 1, . . . ,n.  But for  each i, [6 + k/si] ~ U{[e] :  

- ½ < e < 1} implies ti + k/si ~ Fo which in turn implies k ~ s~(Fo - 6). Therefore  

there are infinitely many integers k such that  k ~ F. 

EXAMPLE. A Hausdor f f  affine topology F 1 on X which is strictly weaker 

than the Eucl idean topology on X .  Let {xl, . . . ,x,} be a basis for  X and let 

be a collection as in Proposi t ion 1. For  each e > 0 and F ~  define 

G(e,F) = { t l x l  + "" + t , x , ' t l  e F  and either I til < e  for i = 1, . . . ,n  or It l[ =>e 

and 0 < 161 < e for  i = 2, . . . ,n}, and for  each x ~ X  define G(x ,e ,F)  = G(e,F) + x. 

Define F1 as the topology whose base is { G ( x , e , F ) : x ~ X ,  e > 0 ,  and F e ~ } .  

Propert ies  (a), (b), and (c) of  Proposi t ion 1 are used to show F 1 is an affine topology 

on X, and propert ies (d) and (e) show respectively that  F 1 is Hausdorf f  and 

strictly weaker than the Euclidean topology.  
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